
cql

Franco Liberali

Jan 15, 2024

GENERAL

1 What is cql? 1

2 Is cql a copy of gorm-gen? 3

3 Quickstart 5
3.1 Run it . 5
3.2 Understand it . 5

4 Tutorial 7
4.1 Model and data . 7
4.2 Tutorial 1: simple query . 8
4.3 Tutorial 2: operators . 8
4.4 Tutorial 3: modifiers . 9
4.5 Tutorial 4: joins . 9
4.6 Tutorial 5: preloading . 10
4.7 Tutorial 6: dynamic operators . 10
4.8 Tutorial 7: update . 11
4.9 Tutorial 8: create and delete . 11
4.10 Tutorial 9: Collections . 12
4.11 Tutorial 10: Compile type safety . 12

5 Concepts 15
5.1 Model . 15
5.2 Base model . 15
5.3 Model ID . 15
5.4 Auto Migration . 15
5.5 GormDB . 16
5.6 Condition . 16
5.7 WhereCondition . 16
5.8 ConnectionCondition . 16
5.9 JoinCondition . 16
5.10 Operator . 16
5.11 Static operator . 17
5.12 Dynamic operator . 17
5.13 Unsafe operator . 17
5.14 Nullable types . 17
5.15 Compiled query system . 17
5.16 Conditions generation . 17
5.17 Relation getter . 18

6 Declaring models 19

i

6.1 Model declaration . 19
6.2 Base models . 19
6.3 Type of attributes . 20
6.4 Associations . 20
6.5 Reverse reference . 22

7 Connecting to a database 23
7.1 Connection . 23
7.2 Migration . 23

8 Type safety 25
8.1 Compile time safety . 25
8.2 Runtime errors . 28

9 cql-gen 31
9.1 Installation . 31
9.2 Conditions generation . 31
9.3 Use of the conditions . 32

10 cqllint 33
10.1 Installation . 33
10.2 Execution . 33
10.3 Errors . 34
10.4 Misuses . 36

11 Query 37
11.1 Query creation . 37
11.2 Transactions . 37
11.3 Query methods . 37
11.4 Conditions . 38
11.5 Operators . 39

12 Advanced query 41
12.1 Collections . 41
12.2 Dynamic operators . 42
12.3 Appearance . 44
12.4 Unsafe operators . 45
12.5 Unsafe conditions (raw SQL) . 45

13 Preloading 47
13.1 Examples . 47
13.2 Relation getters . 48
13.3 Preload collections . 49

14 Create 51

15 Update 53
15.1 Update methods . 53

16 Delete 57
16.1 Delete methods . 57

17 Logger 59
17.1 Log levels . 59
17.2 Transactions . 59
17.3 Default logger . 60

ii

17.4 Zap logger . 60

18 Contributing 63
18.1 Issues . 63
18.2 Pull Requests . 64
18.3 Code of Conduct . 65

19 Developing 67
19.1 Environment . 67
19.2 Directory structure . 67
19.3 Tests . 67
19.4 Requirements . 68
19.5 Use of Third-party code . 68

20 Maintaining 69
20.1 How to release . 69

iii

iv

CHAPTER

ONE

WHAT IS CQL?

Originally part of BaDaaS, CQL allows easy and safe persistence and querying of objects.

It’s built on top of gorm, a library that actually provides the functionality of an ORM: mapping objects to tables in the
SQL database. While gorm does this job well with its automatic migration then performing queries on these objects
is somewhat limited, forcing us to write SQL queries directly when they are complex. CQL seeks to address these
limitations with a query system that:

• Is compile-time safe: queries are validated at compile time to avoid errors such as comparing attributes that are
of different types, trying to use attributes or navigate relationships that do not exist, using information from tables
that are not included in the query, etc.; ensuring that a runtime error will not be raised.

• Is easy to use: the use of its query system does not require knowledge of databases, SQL languages or complex
concepts. Writing queries only requires programming in Go and the result is easy to read.

• Is designed for real applications: the query system is designed to work well in real-world cases where queries
are complex, require navigating multiple relationships, performing multiple comparisons, etc.

• Is designed so that developers can focus on the business model: its queries allow easy retrieval of model rela-
tionships to apply business logic to the model and it provides mechanisms to avoid errors in the business logic
due to mistakes in loading information from the database.

• It is designed for high performance: the query system avoids as much as possible the use of reflection and aims
that all the necessary model data can be retrieved in a single query to the database.

Lan-
guage

Query

SQL SELECT cities.* FROM cities INNER JOIN countries ON countries.id = cities.country_id AND coun-
tries.name = “France” WHERE cities.name = “Paris”

GORM db.Where(“cities.name = ?”,“Paris”,).Joins(“Country”,db.Where(“Country.name = ?”, “France”,),
).Find(&cities)

CQL cql.Query[models.City](db, conditions.City.Name.Is().Eq(“Paris”), conditions.City.Country(condi-
tions.Country.Name.Is().Eq(“France”),),).FindOne()

1

https://github.com/ditrit/badaas
https://gorm.io/

cql

2 Chapter 1. What is cql?

CHAPTER

TWO

IS CQL A COPY OF GORM-GEN?

It is true that its aim seems to be the same:

100% Type-safe DAO API without interface{}

Although gorm-gen provides a more structured API than gorm for performing queries, providing methods like:

Where(conds ...gen.Condition) IUserDo

we can see from this signatures that, for example, the Where method receives parameters of type gen.Condition. In this
way, conditions from different models could be mixed without generating a compilation error:

u := query.User
c := query.Company
user, err := u.Where(c.Name.Eq("franco")).First()

which would generate a runtime error during the execution of the generated SQL:

SELECT * FROM `users` WHERE `companies`.`name` = "franco"
no such column: companies.name

Because of this, cql decides to go further in type safety and check that the conditions are of the correct model, that
the compared values are of the same type, that the models are included in the query and more, ensuring that a runtime
error will not be raised.

For more details see: Type safety.

3

cql

4 Chapter 2. Is cql a copy of gorm-gen?

CHAPTER

THREE

QUICKSTART

To integrate cql into your project, you can head to the quickstart.

3.1 Run it

Refer to its README.md for running it.

3.2 Understand it

Once you have started your project with go init, you must add the dependency to cql:

go get -u github.com/FrancoLiberali/cql gorm.io/gorm

Create a package for your models, for example:

package models

import (
"github.com/FrancoLiberali/cql/model"

)

type MyModel struct {
model.UUIDModel

Name string
}

Once done, you can generate the conditions to perform queries on them. In this case, the file conditions/cql.go has the
following content:

package conditions

//go:generate cql-gen ../models

Then, you can generate the conditions running:

go generate ./...

5

https://github.com/FrancoLiberali/cql-quickstart
https://github.com/FrancoLiberali/cql-quickstart/blob/main/README.md

cql

In main.go there is a main function that creates a gorm.DB that allows connection with the database and calls the
AutoMigrate method with the models you want to be persisted.

After this, you are ready to query your objects using cql.Query.

Now that you know how to integrate cql into your project, you can learn how to use it by following the Tutorial.

6 Chapter 3. Quickstart

CHAPTER

FOUR

TUTORIAL

In this short tutorial you will learn the main functionalities of cql. The code to be executed in each step can be found
in this repository.

4.1 Model and data

In the file models/models.go you find the definition of the following model:

For details about the definition of models you can read Declaring models.

In sqlite:db you will find a sqlite database with the following data:

Table 1: Countries

ID Name CapitalID
1 United States of America 2
2 France 3

Table 2: Cities

ID Name Population CountryID
1 Paris 25171 1
2 Washington D. C. 689545 1
3 Paris 2161000 2

As you can see, there are two cities called Paris in this database: the well known Paris, capital of France and site of the
iconic Eiffel tower, and Paris in the United States of America, site of the Eiffel tower with the cowboy hat (no joke, just
search for paris texas eiffel tower in your favorite search engine).

In this tutorial we will explore the cql functions that will allow us to differentiate these two Paris.

7

https://github.com/FrancoLiberali/cql-tutorial

cql

4.2 Tutorial 1: simple query

In this first tutorial we are going to perform a simple query to obtain all the cities called Paris.

In the tutorial_1.go file you will find that we can perform this query as follows:

cities, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),

).Find()

We can run this tutorial with make tutorial_1 and we will obtain the following result:

Cities named 'Paris' are:
1: City{ID: 1, Name: Paris, Population: 25171, CountryID:1, Country:<nil> }
2: City{ID: 3, Name: Paris, Population: 2161000, CountryID:2, Country:<nil> }

As you can see, in this case we will get both cities which we can differentiate by their population and the id of the
country.

In this tutorial we have used the cql compiled queries system to get these cities, for more details you can read Conditions.

4.3 Tutorial 2: operators

Now we are going to try to obtain only the Paris of France and in a first approximation we could do it using its population:
we will only look for the Paris whose population is greater than one million inhabitants.

In the tutorial_2.go file you will find that we can perform this query as follows:

cities, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),
conditions.City.Population.Is().Gt(1000000),

).Find()

We can run this tutorial with make tutorial_2 and we will obtain the following result:

Cities named 'Paris' with a population bigger than 1.000.000 are:
1: City{ID: 3, Name: Paris, Population: 2161000, CountryID:2, Country:<nil> }

As you can see, in this case we only get one city, Paris in France.

In this tutorial we have used the operator Gt to obtain this city, for more details you can read Operators.

8 Chapter 4. Tutorial

cql

4.4 Tutorial 3: modifiers

Although in the previous tutorial we achieved our goal of differentiating the two Paris, the way to do it is debatable since
the population of Paris, Texas may increase to over 1000000 someday and then, the result of this query can change.
Therefore, we will search only for the city with the largest population.

In the tutorial_3.go file you will find that we can perform this query as follows:

parisFrance, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),

).Descending(
conditions.City.Population,

).Limit(1).FindOne()

We can run this tutorial with make tutorial_3 and we will obtain the following result:

City named 'Paris' with the largest population is: City{ID: 3, Name: Paris, Population:␣
→˓2161000, CountryID:2, Country:<nil> }

As you can see, again we get only the Paris in France. As you may have noticed, in this case we have used the FindOne
method instead of Find. This is because in this case we are sure that the result is a single model, so instead of getting
a list we get a single city.

In this tutorial we have used query modifier methods, for more details you can read Query methods.

4.5 Tutorial 4: joins

Again, the solution of the previous tutorial is debatable because the evolution of populations could make Paris, Texas
have more inhabitants than Paris, France one day. Therefore, we are now going to improve this query by obtaining the
city called Paris whose country is called France.

In the tutorial_4.go file you will find that we can perform this query as follows:

parisFrance, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),
conditions.City.Country(

conditions.Country.Name.Is().Eq("France"),
),

).FindOne()

We can run this tutorial with make tutorial_4 and we will obtain the following result:

City named 'Paris' in 'France' is: City{ID: 3, Name: Paris, Population: 2161000,␣
→˓CountryID:2, Country:<nil> }

As you can see, again we get only the Paris in France.

In this tutorial we have used a condition that performs a join.

4.4. Tutorial 3: modifiers 9

cql

4.6 Tutorial 5: preloading

You may have noticed that in the results of the previous tutorials the Country field of the cities was null (Country:<nil>).
This is because, to ensure performance, cql will retrieve only the attributes of the model you are querying (City in this
case because the method used is cql.Query[models.City]) but not of its relationships. If we also want to obtain this
data, we must perform preloading.

In the tutorial_5.go file you will find that we can perform this query as follows:

cities, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),
conditions.City.Country().Preload(),

).Find()

We can run this tutorial with make tutorial_5 and we will obtain the following result:

Cities named 'Paris' are:
1: City{ID: 1, Name: Paris, Population: 25171, CountryID:1, Country:Country{ID: 1,␣

→˓Name: United States of America, CapitalID:2, Capital:<nil> } } with country: Country
→˓{ID: 1, Name: United States of America, CapitalID:2, Capital:<nil> }

2: City{ID: 3, Name: Paris, Population: 2161000, CountryID:2, Country:Country{ID: 2,␣
→˓Name: France, CapitalID:3, Capital:<nil> } } with country: Country{ID: 2, Name: France,
→˓ CapitalID:3, Capital:<nil> }

As you can see, now the country attribute is a valid pointer to a Country object (Country:0xc0001d1600). Then
the Country object information is accessed with the GetCountry method. This method is not defined in the mod-
els/models.go file but is a relation getter that is generated by cql-gen together with the conditions. These methods
allow us to differentiate null objects from objects not loaded from the database, since when trying to browse a relation
that was not loaded we will get cql.ErrRelationNotLoaded.

In this tutorial we have used preloading and relation getters, for more details you can read Preloading.

4.7 Tutorial 6: dynamic operators

So far we have performed operations that take as input a static value (equal to “Paris” or greater than 1000000) but
what if now we would like to differentiate these two Paris from each other based on whether they are the capital of their
country.

In the tutorial_6.go file you will find that we can perform this query as follows:

cities, err := cql.Query[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),
conditions.City.Country(

conditions.Country.CapitalID.IsDynamic().Eq(conditions.City.ID.Value()),
),

).Find()

We can run this tutorial with make tutorial_6 and we will obtain the following result:

Cities named 'Paris' that are the capital of their country are:
1: City{ID: 3, Name: Paris, Population: 2161000, CountryID:2, Country:<nil> }

10 Chapter 4. Tutorial

cql

As you can see, again we only get the Paris in France.

In this tutorial we have used dynamic conditions, for more details you can read Dynamic operators.

4.8 Tutorial 7: update

So far we have only made select queries, but in this tutorial we want to edit the population of Paris.

In the tutorial_7.go file you will find that we can perform this query as follows:

updated, err := cql.Update[models.City](
db,
conditions.City.Name.Is().Eq("Paris"),
conditions.City.Country(

conditions.Country.Name.Is().Eq("France"),
),

).Returning(&cities).Set(
conditions.City.Population.Set().Eq(2102650),

)

We can run this tutorial with make tutorial_7 and we will obtain the following result:

Updated 1 city: City{ID: 3, Name: Paris, Population: 2102650, CountryID:2, Country:<nil>␣
→˓}
Initial population was 2161000

As you can see, first we can know the number of updated models with the value “updated” returned by the Set method
(according to the number of models that meet the conditions entered in the Update method). On the other hand, it is
also possible to obtain the information of the updated models using the Returning method.

In this tutorial we have used updates, for more details you can read Update.

4.9 Tutorial 8: create and delete

In this tutorial we want to create a new city called Rennes and then delete it.

In the tutorial_8.go file you will find that we can perform this query as follows:

Listing 1: Create

rennes := models.City{
Country: france,
Name: "Rennes",
Population: 215366,

}
if err := db.Create(&rennes).Error; err != nil {

log.Panicln(err)
}

4.8. Tutorial 7: update 11

cql

Listing 2: Delete

deleted, err := cql.Delete[models.City](
db,
conditions.City.Name.Is().Eq("Rennes"),

).Exec()

We can run this tutorial with make tutorial_8 and we will obtain the following result:

Deleted 1 city

Here, we simply get the number of deleted models through the “deleted” variable returned by the Exec method (ac-
cording to the number of models that meet the conditions entered in the Delete method).

In this tutorial we have used create and delete, for more details you can read Create and Delete.

4.10 Tutorial 9: Collections

In this tutorial we want to obtain all the countries that have a city called ‘Paris’

In the tutorial_9.go file you will find that we can perform a query as follows:

countries, err := cql.Query[models.Country](
db,
conditions.Country.Cities.Any(

conditions.City.Name.Is().Eq("Paris"),
),

).Find()

We can run this tutorial with make tutorial_9 and we will obtain the following result:

Countries that have a city called 'Paris' are:
1: Country{ID: 1, Name: United States of America, CapitalID:2, Capital:<nil> }
2: Country{ID: 2, Name: France, CapitalID:3, Capital:<nil> }

As you can see, again we only get the Paris in France.

In this tutorial we have used conditions over collections, for more details you can read Collections.

4.11 Tutorial 10: Compile type safety

In this tutorial we want to verify that cql is compile-time safe.

In the tutorial_10.go file you will find that we try to perform a query as follows:

_, err := cql.Query[models.City](
db,
conditions.Country.Name.Is().Eq("Paris"),

).Find()

We can run this tutorial with make tutorial_10 and we will obtain the following error during compilation:

12 Chapter 4. Tutorial

cql

./tutorial_10.go:20:3:
cannot use conditions.Country.Name.Is().Eq("Paris")
(value of type condition.WhereCondition[models.Country]) as condition.

→˓Condition[models.City]...

As you can see, in this tutorial we are trying to put a condition on Country (conditions.Country) to a Query whose main
model is City (Query[models.City]). This would be equivalent to trying to execute the following SQL query:

SELECT * FROM cities
WHERE countries.name = "Paris"

Therefore, we will get a compilation error and this incorrect code will never be executed.

For more details you can read Type safety.

4.11. Tutorial 10: Compile type safety 13

cql

14 Chapter 4. Tutorial

CHAPTER

FIVE

CONCEPTS

5.1 Model

A model is any object (struct) of go that you want to persist in the database and on which you can perform queries. For
this, the struct must have an embedded cql base model.

For details visit Model declaration.

5.2 Base model

It is a struct that when embedded allows your structures to become cql models, adding ID, CreatedAt, UpdatedAt and
DeletedAt attributes and the possibility to persist, create conditions and perform queries on these structures.

For details visit Base models.

5.3 Model ID

The id is a unique identifier needed to persist a model in the database. It can be a model.UIntID or a model.UUID,
depending on the base model used.

For details visit Base models.

5.4 Auto Migration

To persist the models it is necessary to migrate the database, so that the structure of the tables corresponds to the
definition of the model. This migration is performed by gorm through the gormDB.

For details visit Migration.

15

cql

5.5 GormDB

GormDB is a gorm.DB object that allows communication with the database. This object will be needed as a parameter
for the main cql functions (Query, Update and Delete).

For details visit Connection.

5.6 Condition

Conditions are the basis of the cql query system, every query is composed of a set of conditions. Conditions belong to
a particular model and there are 4 different types: WhereConditions, ConnectionConditions and JoinConditions.

For details visit Query.

5.7 WhereCondition

Type of condition that allows filters to be made on the model to which they belong and an attribute of this model. These
filters are performed through operators.

For details visit Query.

5.8 ConnectionCondition

Type of condition that allows the use of logical operators (and, or, or, not) between WhereConditions.

For details visit Query.

5.9 JoinCondition

Condition type that allows to navigate relationships between models, which will result in a join in the executed query
(don’t worry, if you don’t know what a join is, you don’t need to understand the queries that cql executes).

For details visit Query.

5.10 Operator

Concept similar to database operators, which allow different operations to be performed on an attribute of a model,
such as comparisons, predicates, pattern matching, etc.

Operators can be classified as static, dynamic and unsafe.

For details visit Query.

16 Chapter 5. Concepts

cql

5.11 Static operator

Static operators are those that perform operations on an attribute and static values, such as a boolean value, an integer,
etc.

For details visit Query.

5.12 Dynamic operator

Dynamic operators are those that perform operations between an attribute and other attributes, either from the same
model or from a different model, as long as the type of these attributes is the same.

For details visit Advanced query.

5.13 Unsafe operator

Unsafe operators are those that can perform operations between an attribute and any type of value or attribute.

For details visit Advanced query.

5.14 Nullable types

Nullable types are the types provided by the sql library that are a nullable version of the basic types: sql.NullString,
sql.NullTime, sql.NullInt64, sql.NullInt32, sql.NullBool, sql.NullFloat64, etc..

For details visit <https://pkg.go.dev/database/sql>.

5.15 Compiled query system

The set of conditions that are received by the cql.Query, cql.Update and cql.Delete methods form the cql compiled
query system. It is so named because the conditions will verify at compile time that the query to be executed is correct.

For details visit Conditions and Type safety.

5.16 Conditions generation

Conditions are the basis of the compiled query system. They are generated for each model and attribute and can then
be used. Their generation is done with cql-gen.

For details visit Conditions generation.

5.11. Static operator 17

https://pkg.go.dev/database/sql

cql

5.17 Relation getter

Relationships between objects can be loaded from the database using the Preload method. In order to safely navigate
the relations in the loaded model cql provides methods called “relation getters”.

For details visit Preloading.

18 Chapter 5. Concepts

CHAPTER

SIX

DECLARING MODELS

6.1 Model declaration

The cql model declaration is based on the GORM model declaration, so its definition, conventions, tags and associations
are compatible with cql. For details see gorm documentation. On the contrary, cql presents some differences/extras
that are explained in this section.

6.2 Base models

To be considered a model, your structures must have embedded one of the base models provided by cql:

• model.UUIDModel: Model identified by a model.UUID (Random (Version 4) UUID).

• model.UIntModel: Model identified by a model.UIntID (auto-incremental uint).

Both base models provide date created, updated and deleted.

To use them, simply embed the desired model in any of your structs:

type MyModel struct {
model.UUIDModel

Name string
Email *string
Age uint8
Birthday *time.Time
MemberNumber sql.NullString
ActivatedAt sql.NullTime
// ...

}

19

https://gorm.io/docs/models.html
https://gorm.io/docs/delete.html#Soft-Delete

cql

6.3 Type of attributes

As we can see in the example in the previous section, the attributes of your models can be of multiple types, such as
basic go types, pointers, and nullable types.

This difference can generate differences in the data that is stored in the database, since saving a model created as follows:

MyModel{}

will save a empty string for Name but a NULL for the Email and the MemberNumber.

The use of nullable types is strongly recommended and cql takes into account their use in each of its functionalities.

6.4 Associations

All associations provided by GORM are supported. For more information see <https://gorm.io/docs/belongs_to.html>,
<https://gorm.io/docs/has_one.html>, <https://gorm.io/docs/has_many.html> and <https://gorm.io/docs/many_to_
many.html>. However, in this section we will give some differences in cql and details that are not clear in this docu-
mentation.

6.4.1 IDs

Since cql base models use model.UUID or model.UIntID to identify the models, the type of id used in a reference to
another model is the corresponding one of these two, for example:

type ModelWithUUID struct {
model.UUIDModel

}

type ModelWithUIntID struct {
model.UIntModel

}

type ModelWithReferences struct {
model.UUIDModel

ModelWithUUID *ModelWithUUID
ModelWithUUIDID *model.UUID

ModelWithUIntID *ModelWithUIntID
ModelWithUIntIDID *model.UIntID

}

20 Chapter 6. Declaring models

https://gorm.io/docs/belongs_to.html
https://gorm.io/docs/has_one.html
https://gorm.io/docs/has_many.html
https://gorm.io/docs/many_to_many.html
https://gorm.io/docs/many_to_many.html

cql

6.4.2 References

References to other models can be made with or without pointers:

type ReferencedModel struct {
model.UUIDModel

}

type ModelWithPointer struct {
model.UUIDModel

// reference with pointer
PointerReference *ReferencedModel
PointerReferenceID *model.UUID

}

type ModelWithoutPointer struct {
model.UUIDModel

// reference without pointer
Reference ReferencedModel
ReferenceID model.UUID

}

As in the case of attributes, this can make a difference when persisting, since one created as follows:

ModelWithoutPointer{}

will also create and save an empty ReferencedModel{}, what may be undesired behavior. For this reason, although
both options are still compatible with cql, we recommend the use of pointers for references. In case the relation is not
nullable, use the not null tag in the id of the reference, for example:

type ReferencedModel struct {
model.UUIDModel

}

type ModelWithPointer struct {
model.UUIDModel

// reference with pointer not null
PointerReference *ReferencedModel
PointerReferenceID *model.UUID `gorm:"not null"`

}

6.4. Associations 21

cql

6.5 Reverse reference

Although no example within the gorm’s documentation shows it, when defining relations, we can also put a reference
in the reverse direction to add navigability to our model. In addition, adding this reverse reference will allow the
corresponding conditions to be generated during condition generation.

For example:

type Related struct {
model.UUIDModel

YourModel *YourModel
}

type YourModel struct {
model.UUIDModel

Related *Related
RelatedID *model.UUID

}

22 Chapter 6. Declaring models

https://gorm.io/docs/has_one.html

CHAPTER

SEVEN

CONNECTING TO A DATABASE

7.1 Connection

cql supports the databases MySQL, PostgreSQL, SQLite, SQL Server using gorm’s driver. Some databases may be
compatible with the mysql or postgres dialect, in which case you could just use the dialect for those databases (from
which CockroachDB is tested).

To communicate with the database, cql needs a GormDB object. To create it, you can use the function cql.Open that
will allow you to connect to a database using the specified dialector. This function is equivalent to gorm.Open but with
the difference that in case of not adding any configuration, the cql default logger will be configured instead of the gorm
one. For details about this logger visit Logger. For details about gorm configuration visit gorm documentation.

7.2 Migration

Migration is done by gorm using the gormDB.AutoMigrate method. For details visit gorm docs.

23

https://gorm.io/docs/connecting_to_the_database.html
https://gorm.io/docs/migration.html

cql

24 Chapter 7. Connecting to a database

CHAPTER

EIGHT

TYPE SAFETY

8.1 Compile time safety

One of the most important features of the CQL is

Is compile-time safe:
queries are validated at compile time to avoid errors
such as comparing attributes that are of different types,
trying to use attributes or navigate relationships that do not exist,
using information from tables that are not included in the query, etc.;
ensuring that a runtime error will not be raised.

While there are other libraries that provide an API type safety (gorm-gen, jooq (Java), diesel (Rust)), CQL is the only
one that allows us to be sure that the generated query is correct, (almost) avoiding runtime errors (to understand why
“almost” see Runtime errors)

8.1.1 Conditions of the model

cql will only allow us to add conditions on the model we are querying, prohibiting the use of conditions from other
models in the wrong place:

Listing 1: Correct

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Name.Is().Eq("Paris"),
4).Find()

Listing 2: Incorrect

1 _, err := cql.Query[models.City](
2 db,
3 conditions.Country.Name.Is().Eq("Paris"),
4).Find()

In this case, the compilation error will be:

cannot use conditions.Country.Name.Is().Eq("Paris")
(value of type condition.WhereCondition[models.Country]) as condition.Condition[models.
→˓City]...

25

https://gorm.io/gen/
https://www.jooq.org/
https://diesel.rs/

cql

Similarly, conditions are checked when making joins:

Listing 3: Correct

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Country(
4 conditions.Country.Name.Is().Eq("France"),
5),
6).Find()

Listing 4: Incorrect

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Country(
4 conditions.City.Name.Is().Eq("France"),
5),
6).Find()

8.1.2 Name of an attribute or operator

Since the conditions are made using the auto-generated code, the attributes and methods used on it will only allow us
to use attributes and operators that exist:

Listing 5: Correct

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Name.Is().Eq("Paris"),
4).Find()

26 Chapter 8. Type safety

cql

Listing 6: Incorrect

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Namee.Is().Eq("Paris"),
4).Find()

In this case, the compilation error will be:

conditions.City.Namee undefined (type conditions.cityConditions has no field or method␣
→˓Namee)

8.1.3 Type of an attribute

cql not only verifies that the attribute used exists but also verifies that the value compared to the attribute is of the
correct type:

Listing 7: Correct

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Name.Is().Eq("Paris"),
4).Find()

Listing 8: Incorrect

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Name.Is().Eq(100),
4).Find()

In this case, the compilation error will be:

cannot use 100 (untyped int constant) as string value in argument to conditions.City.
→˓Name.Is().Eq

8.1.4 Type of an attribute (dynamic operator)

cql also checks that the type of the attributes is correct when using dynamic operators. In this case, the type of the two
attributes being compared must be the same:

Listing 9: Correct

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Country(
4 conditions.Country.Name.IsDynamic().Eq(conditions.City.Name.Value()),
5),
6).Find()

8.1. Compile time safety 27

cql

Listing 10: Incorrect

1 _, err := cql.Query[models.City](
2 db,
3 conditions.City.Country(
4 conditions.Country.Name.IsDynamic().Eq(conditions.City.Population.Value()),
5),
6).Find()

In this case, the compilation error will be:

cannot use conditions.City.Population (variable of type condition.UpdatableField[models.
→˓City, int]) as condition.FieldOfType[string] value in argument to conditions.Country.
→˓Name.IsDynamic().Eq...

8.2 Runtime errors

Although all the above checks are at compile-time, there are still some possible cases that generate the following run-
time errors:

• cql.ErrFieldModelNotConcerned (1): generated when trying to use a model that is not related to the rest of the
query (not joined).

• cql.ErrAppearanceMustBeSelected (1): generated when you try to use a model that appears (is joined) more than
once in the query without selecting which one you want to use (see Appearance).

• cql.ErrAppearanceOutOfRange (1): generated when you try select an appearance number (with the Appearance
method) greater than the number of appearances of a model. (see Appearance).

• cql.ErrFieldIsRepeated (1): generated when a field is repeated inside a Set call (see Update).

• cql.ErrOnlyPreloadsAllowed: generated when trying to use conditions within a preload of collections (see Col-
lections).

• cql.ErrUnsupportedByDatabase: generated when an attempt is made to use a method or function that is not
supported by the database engine used.

• cql.ErrOrderByMustBeCalled: generated when in MySQL you try to do a delete/update with Limit but without
using OrderBy.

Note: (1) errors avoided with cqllint.

However, these errors are discovered by CQL before the query is executed. In addition, CQL will add to the error clear
information about the problem so that it is easy to fix, for example:

Listing 11: Query

1 _, err := cql.Query[models.Product](
2 ts.db,
3 conditions.Product.Int.Is().Eq(1),
4).Descending(conditions.Seller.ID).Find()
5

6 fmt.Println(err)

28 Chapter 8. Type safety

cql

Listing 12: Result

field's model is not concerned by the query (not joined); not concerned model: models.
→˓Seller; method: Descending

8.2. Runtime errors 29

cql

30 Chapter 8. Type safety

CHAPTER

NINE

CQL-GEN

cql-gen is the command line tool that generates the conditions to query your objects. For each cql Model found in the
input packages, a file containing all possible Conditions on that object will be generated, allowing you to use cql.

9.1 Installation

For simply installing it, use:

go install github.com/FrancoLiberali/cql/cql-gen@latest

Warning: The version of cql-gen used must be the same as the version of cql. You can install a specific version
using go install github.com/FrancoLiberali/cql/cql-gen@vX.Y.Z, where X.Y.Z is the version number.

9.2 Conditions generation

While conditions can be generated executing cql-gen, it’s recommended to use go generate:

Once cql-gen is installed, inside our project we will have to create a package called conditions (or another name if you
wish) and inside it a file with the following content:

package conditions

//go:generate cql-gen ../models_path_1 ../models_path_2

where ../models_path_1 ../models_path_2 are the relative paths between the package conditions and the packages con-
taining the definition of your models (can be only one).

Example file.

Now, from the root of your project you can execute:

go generate ./...

and the conditions for each of your models will be created in the conditions package.

31

https://github.com/FrancoLiberali/cql-quickstart/blob/main/conditions/cql.go

cql

9.3 Use of the conditions

After performing the conditions generation, your conditions package will have a replica of your models package, i.e.
if, for example, the type models.MyModel is part of your models, the variable conditions.MyModel will be in the
conditions package. This variable is called the condition model and it has:

• An attribute for each attribute of your original model with the same name (if models.MyModel.Name exists, then
conditions.MyModel.Name is generated), that allows to use that attribute in your queries.

• A method for each relation of your original model with the same name (if models.MyModel.MyOtherModel
exists, then conditions.MyModel.MyOtherModel() is generated), which will allow you to perform joins in your
queries.

• Methods for Preloading.

Then, combining these conditions, the Connection Conditions (cql.And, cql.Or, cql.Not) you will be able to make all
the queries you need in a safe way.

For details about querying, see Query.

32 Chapter 9. cql-gen

CHAPTER

TEN

CQLLINT

cqllint is a Go linter that checks that cql queries will not generate run-time errors.

While, in most cases, queries created using cql are checked at compile time, there are still some cases that can generate
run-time errors (see Runtime errors).

cqllint analyses the Go code written to detect these cases and fix them without the need to execute the query. It also
adds other detections that would not generate runtime errors but are possible misuses of cql.

Note: At the moment, only the errors cql.ErrFieldModelNotConcerned, cql.ErrFieldIsRepeated,
cql.ErrAppearanceMustBeSelected and cql.ErrAppearanceOutOfRange are detected.

We recommend integrating cqllint into your CI so that the use of cql ensures 100% that your queries will be executed
correctly.

10.1 Installation

For simply installing it, use:

go install github.com/FrancoLiberali/cql/cqllint@latest

Warning: The version of cqllint used must be the same as the version of cql. You can install a specific version
using go install github.com/FrancoLiberali/cql/cqllint@vX.Y.Z, where X.Y.Z is the version number.

10.2 Execution

cqllint can be used independently by running:

cqllint ./...

or using go vet:

go vet -vettool=$(which cqllint) ./...

33

cql

10.3 Errors

10.3.1 ErrFieldModelNotConcerned

The simplest example this error case is trying to make a comparison with an attribute of a model that is not joined by
the query:

Listing 1: example.go

1 _, err := cql.Query[models.Brand](
2 db,
3 conditions.Brand.Name.IsDynamic().Eq(conditions.City.Name.Value()),
4).Find()

If we execute this query we will obtain an error of type cql.ErrFieldModelNotConcerned with the following message:

field's model is not concerned by the query (not joined); not concerned model: models.
→˓City; operator: Eq; model: models.Brand, field: Name

Now, if we run cqllint we will see the following report:

$ cqllint ./...
example.go:3: models.City is not joined by the query

10.3.2 ErrFieldIsRepeated

The simplest example this error case is trying to set the value of an attribute twice:

Listing 2: example.go

1 _, err := cql.Update[models.Brand](
2 db,
3 conditions.Brand.Name.Is().Eq("nike"),
4).Set(
5 conditions.Brand.Name.Set().Eq("adidas"),
6 conditions.Brand.Name.Set().Eq("puma"),
7)

If we execute this query we will obtain an error of type cql.ErrFieldIsRepeated with the following message:

field is repeated; field: models.Brand.Name; method: Set

Now, if we run cqllint we will see the following report:

$ cqllint ./...
example.go:5: conditions.Brand.Name is repeated
example.go:6: conditions.Brand.Name is repeated

34 Chapter 10. cqllint

cql

10.3.3 ErrAppearanceMustBeSelected

To generate this error we must join the same model more than once and not select the appearance number:

Listing 3: example.go

1 _, err := cql.Query[models.Child](
2 db,
3 conditions.Child.Parent1(
4 conditions.Parent1.ParentParent(),
5),
6 conditions.Child.Parent2(
7 conditions.Parent2.ParentParent(),
8),
9 conditions.Child.ID.IsDynamic().Eq(conditions.ParentParent.ID.Value()),

10).Find()

If we execute this query we will obtain an error of type cql.ErrAppearanceMustBeSelected with the following message:

field's model appears more than once, select which one you want to use with Appearance;␣
→˓model: models.ParentParent; operator: Eq; model: models.Child, field: ID

Now, if we run cqllint we will see the following report:

$ cqllint ./...
example.go:9: models.ParentParent appears more than once, select which one you want to␣
→˓use with Appearance

10.3.4 ErrAppearanceOutOfRange

To generate this error we must use the Appearance method with a value greater than the number of appearances of a
model:

Listing 4: example.go

1 _, err := cql.Query[models.Phone](
2 db,
3 conditions.Phone.Brand(
4 conditions.Brand.Name.IsDynamic().Eq(conditions.Phone.Name.Appearance(1).

→˓Value()),
5),
6).Find()

If we execute this query we will obtain an error of type cql.ErrAppearanceOutOfRange with the following message:

selected appearance is bigger than field's model number of appearances; model: models.
→˓Phone; operator: Eq; model: models.Brand, field: Name

Now, if we run cqllint we will see the following report:

$ cqllint ./...
example.go:4: selected appearance is bigger than models.Phone's number of appearances

10.3. Errors 35

cql

10.4 Misuses

Although some cases would not generate runtime errors, cqllint will detect them as they are possible misuses of cql.

10.4.1 Set the same value

This case occurs when making a Set of exactly the same value:

Listing 5: example.go

1 _, err := cql.Update[models.Brand](
2 db,
3 conditions.Brand.Name.Is().Eq("nike"),
4).Set(
5 conditions.Brand.Name.Set().Dynamic(conditions.Brand.Name.Value()),
6)

If we run cqllint we will see the following report:

$ cqllint ./...
example.go:5: conditions.Brand.Name is set to itself

10.4.2 Unnecessary Appearance selection

This is the case when the Appearance method is used without being necessary, i.e. when the model appears only once:

Listing 6: example.go

1 _, err := cql.Query[models.Phone](
2 db,
3 conditions.Phone.Brand(
4 conditions.Brand.Name.IsDynamic().Eq(conditions.Phone.Name.Appearance(0).

→˓Value()),
5),
6).Find()

If we run cqllint we will see the following report:

$ cqllint ./...
example.go:4: Appearance call not necessary, models.Phone appears only once

36 Chapter 10. cqllint

CHAPTER

ELEVEN

QUERY

Read (query) operations are provided by cql via its compiled query system.

11.1 Query creation

To create a query you must use the cql.Query[models.MyModel] method, where models.MyModel is the model you
expect this query to answer. This function takes as parameters the transaction on which to execute the query and the
Conditions.

11.2 Transactions

To execute transactions, cql provides the function cql.Transaction. The function passed by parameter will be executed
inside a gorm transaction (for more information visit https://gorm.io/docs/transactions.html). Using this method will
also allow the transaction execution time to be logged.

11.3 Query methods

The object obtained using cql.Query has different methods that will allow you to obtain the results of the query:

11.3.1 Modifier methods

Modifier methods are those that modify the query in a certain way, affecting the results obtained: - Limit: specifies the
number of models to be retrieved. - Offset: specifies the number of models to skip before starting to return the results.
- Ascending: specifies an ascending order when retrieving models. - Descending: specifies a descending order when
retrieving models from database.

37

https://gorm.io/docs/transactions.html

cql

11.3.2 Finishing methods

Finishing methods are those that cause the query to be executed and the result(s) of the query to be returned:

• Count: returns the amount of models that fulfill the conditions.

• First: finds the first model ordered by primary key.

• Take: finds the first model returned by the database in no specified order.

• Last: finds the last model ordered by primary key.

• FindOne: finds the only one model that matches given conditions or returns error if 0 or more than 1 are found.

• Find: finds list of models that meet the conditions.

11.4 Conditions

The set of conditions that are received by the cql.Query method form the cql compiled query system. It is so named
because the conditions will verify at compile time that the query to be executed is correct.

These conditions are objects of type Condition that contain the necessary information to perform the queries in a safe
way. They are generated from the definition of your models using cql-gen.

11.4.1 Examples

Filter by an attribute

In this example we query all MyModel that has “a_string” in the Name attribute.

type MyModel struct {
model.UUIDModel

Name string
}

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Name.Is().Eq("a_string"),

).Find()

Filter by an attribute of a related model

In this example we query all MyModels whose related MyOtherModel has “a_string” in its Name attribute.

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Related MyOtherModel
(continues on next page)

38 Chapter 11. Query

cql

(continued from previous page)

RelatedID model.UUID
}

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Name.Is().Eq("a_string"),
),

).Find()

Multiple conditions

In this example we query all MyModels that has a 4 in the Code attribute and whose related MyOtherModel has
“a_string” in its Name attribute.

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Code int

Related MyOtherModel
RelatedID model.UUID

}

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Code.Is().Eq(4),
conditions.MyModel.Related(

conditions.MyOtherModel.Name.Is().Eq("a_string"),
),

).Find()

11.5 Operators

The different operators to use inside your queries are defined by the methods of the FieldIs type, which is returned
when calling the Is() method. Below you will find the complete list of available operators:

• Eq(value): Equal to

• NotEq(value): Not equal to

• Lt(value): Less than

• LtOrEq(value): Less than or equal to

• Gt(value): Greater than

• GtOrEq(value): Greater than or equal to

11.5. Operators 39

cql

• Null()

• NotNull()

• Between(v1, v2): Equivalent to v1 < attribute < v2

• NotBetween(v1, v2): Equivalent to NOT (v1 < attribute < v2)

• Distinct(value)

• NotDistinct(value)

• In(values)

• NotIn(values)

For boolean attributes:

• True()

• NotTrue()

• False()

• NotFalse()

• Unknown(): unknown is null for booleans

• NotUnknown(): unknown is null for booleans

For string attributes:

• Like(pattern)

In addition to these, cql gives the possibility to use operators that are only supported by a certain database (outside the
standard). For doing it, you must use the Custom method and give the operator as argument, for example:

conditions.MyModel.Code.Is().Custom(psql.ILike("_a%")),

These operators can be found in <https://pkg.go.dev/github.com/FrancoLiberali/cql/mysql>, <https://pkg.go.dev/
github.com/FrancoLiberali/cql/sqlserver>, <https://pkg.go.dev/github.com/FrancoLiberali/cql/psql> and <https://
pkg.go.dev/github.com/FrancoLiberali/cql/sqlite>.

You can also define your own operators following the condition.Operator interface.

40 Chapter 11. Query

https://pkg.go.dev/github.com/FrancoLiberali/cql/mysql
https://pkg.go.dev/github.com/FrancoLiberali/cql/sqlserver
https://pkg.go.dev/github.com/FrancoLiberali/cql/sqlserver
https://pkg.go.dev/github.com/FrancoLiberali/cql/psql
https://pkg.go.dev/github.com/FrancoLiberali/cql/sqlite
https://pkg.go.dev/github.com/FrancoLiberali/cql/sqlite

CHAPTER

TWELVE

ADVANCED QUERY

12.1 Collections

cql also allows you to set conditions on a collection of models (one to many or many to many relationships):

Listing 1: Example model

type Seller struct {
model.UUIDModel

Name string

Company *Company
CompanyID *model.UUID // Company HasMany Seller (Company 0..1 -> 0..* Seller)

}

type Company struct {
model.UUIDModel

Sellers *[]Seller // Company HasMany Seller (Company 0..1 -> 0..* Seller)
}

41

cql

Listing 2: Query

companies, err := cql.Query[Company](
conditions.Company.Sellers.Any(

conditions.Seller.Name.Is().Eq("franco"),
),

).Find()

The methods for collections are:

• None: generates a condition that is true if no model in the collection fulfills the conditions.

• Any: generates a condition that is true if at least one model in the collection fulfills the conditions.

• All: generates a condition that is true if all models in the collection fulfill the conditions (or is empty).

12.2 Dynamic operators

In Query we have seen how to use the operators to make comparisons between the attributes of a model and static
values such as a string, a number, etc. But if we want to make comparisons between two or more attributes of the same
type we need to use the dynamic operators. These, instead of a dynamic value, receive a Field, that is, an object that
identifies the attribute with which the operation is to be performed.

These identifiers are also generated during the generation of conditions as attributes of the condition model (if mod-
els.MyModel.Name exists, then conditions.MyModel.Name is generated).

For example we query all MyModels that has the same value in its Name attribute that its related MyOtherModel’s
Name attribute.

Listing 3: Example model

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Name string

Related MyOtherModel
RelatedID model.UUID

}

Listing 4: Query

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Name.IsDynamic().Eq(conditions.MyModel.Name.Value()),
),

).Find()

42 Chapter 12. Advanced query

cql

Attention, when using dynamic operators the verification that the Field is concerned by the query is performed at run
time, returning an error otherwise. For example:

Listing 5: Example model

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Name string

Related MyOtherModel
RelatedID model.UUID

}

Listing 6: Query

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Name.IsDynamic().Eq(conditions.MyOtherModel.Name.Value()),

).Find()

will respond cql.ErrFieldModelNotConcerned in err.

All operators supported by cql that receive any value are available in their dynamic version after using the Dynamic()
method of the FieldIs object.

12.2.1 Functions

When using dynamic operators it is also possible to apply functions on the values to be used. For example, if we seek
to obtain the cities whose population represents at least half of the population of their country:

Listing 7: Example model

type Country struct {
model.UUIDModel

Population int
}

type City struct {
model.UUIDModel

Population int

Country Country
CountryID model.UUID

}

12.2. Dynamic operators 43

cql

Listing 8: Query

1 cities, err := cql.Query[City](
2 gormDB,
3 conditions.City.Country(
4 conditions.Country.Population.IsDynamic().Lt(
5 conditions.City.Population.Value().Times(2),
6),
7),
8).Find()

12.3 Appearance

In case the attribute to be used is present more than once in the query, it will be necessary to select select its appearance
number, to avoid getting the error cql.ErrAppearanceMustBeSelected. To do this, you must use the Appearance method
of the field, as in the following example:

Listing 9: Example model

type ParentParent struct {
model.UUIDModel

}

type Parent1 struct {
model.UUIDModel

ParentParent ParentParent
ParentParentID model.UUID

}

type Parent2 struct {
model.UUIDModel

ParentParent ParentParent
ParentParentID model.UUID

}

type Child struct {
model.UUIDModel

Parent1 Parent1
Parent1ID model.UUID

Parent2 Parent2
Parent2ID model.UUID

}

Listing 10: Query

1 models, err := cql.Query[Child](
2 gormDB,

(continues on next page)

44 Chapter 12. Advanced query

cql

(continued from previous page)

3 conditions.Child.Parent1(
4 conditions.Parent1.ParentParent(),
5),
6 conditions.Child.Parent2(
7 conditions.Parent2.ParentParent(),
8),
9 conditions.Child.Name.IsDynamic().Eq(

10 conditions.ParentParent.Name.Appearance(0).Value(), // choose the first (0)␣
→˓appearance (made by conditions.Child.Parent1())

11),
12).Find()

12.4 Unsafe operators

In case you want to avoid the type validations performed by the operators, unsafe operators should be used. Although
their use is not recommended, this can be useful when the database used allows operations between different types or
when attributes of different types map at the same time in the database (see <https://gorm.io/docs/data_types.html>).

If it is neither of these two cases, the use of an unsafe operator will result in an error in the execution of the query that
depends on the database used.

All operators supported by cql that receive any value are available in their unsafe version after using the IsUnsafe()
method of the Field object.

12.5 Unsafe conditions (raw SQL)

In case you need to use operators that are not supported by cql (please create an issue in our repository if you think we
have forgotten any), you can always run raw SQL with unsafe.NewCondition, as in the following example:

myModels, err := cql.Query[MyModel](
gormDB,
unsafe.NewCondition[MyModel]("%s.name = NULL"),

).Find()

As you can see in the example, “%s” can be used in the raw SQL to be replaced by the table name of the model to
which the condition belongs.

Of course, its use is not recommended because it can generate errors in the execution of the query that will depend on
the database used.

12.4. Unsafe operators 45

https://gorm.io/docs/data_types.html

cql

46 Chapter 12. Advanced query

CHAPTER

THIRTEEN

PRELOADING

When doing a join, conditions can be applied on joined models but, by default, only the information of the main model
is returned as a result. To also get the joined models, it is necessary to use the Preload() method.

13.1 Examples

Preload a related model

In this example we query all MyModels and preload whose related MyOtherModel.

type MyOtherModel struct {
model.UUIDModel

}

type MyModel struct {
model.UUIDModel

Related MyOtherModel
RelatedID model.UUID

}

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Related().Preload(),

).Find()

Nested preloads

type Parent struct {
model.UUIDModel

}

type MyOtherModel struct {
model.UUIDModel

Parent Parent
ParentID model.UUID

}

type MyModel struct {
(continues on next page)

47

cql

(continued from previous page)

model.UUIDModel

Related MyOtherModel
RelatedID model.UUID

}

myModels, err := cql.Query[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Parent().Preload(),
),

).Find()

As we can see, it is not necessary to add the preload to all joins, it is enough to do it in the deepest one, to recover, in
this example, both Related and Parent.

13.2 Relation getters

At the moment, with the PreloadConditions, we can choose whether or not to preload a relation. The problem is that
once we get the result of the query, we cannot determine if a null value corresponds to the fact that the relation is
really null or that the preload was not performed, which means a big risk of making decisions in our business logic on
incomplete information.

For this reason, cql provides the Relation getters. These are methods that will be added to your models to safely navigate
a relation, responding cql.ErrRelationNotLoaded in case you try to navigate a relation that was not loaded from the
database. They are created in a file called cql.go in your model package when generating conditions.

Here is an example of its use:

type MyOtherModel struct {
model.UUIDModel

}

type MyModel struct {
model.UUIDModel

Related MyOtherModel
RelatedID model.UUID

}

myModel, err := cql.Query[MyModel](
conditions.MyModel.Related().Preload(),

).FindOne()

if err == nil {
firstRelated, err := myModel.GetRelated()
if err == nil {

// you can safely apply your business logic
} else {

// err is cql.ErrRelationNotLoaded
}

}

48 Chapter 13. Preloading

cql

Unfortunately, these relation getters cannot be created in all cases but only in those in which:

• The relation is made with an object directly instead of a pointer (which is not recommended as described here).

• The relation is made with pointers and the foreign key (typically the ID) is in the same model.

• The relation is made with a pointer to a list.

13.3 Preload collections

Model collections can also be preloaded (relations has many or many to many):

Listing 1: Example model

type Seller struct {
model.UUIDModel

Company *Company
CompanyID *model.UUID // Company HasMany Seller (Company 0..1 -> 0..* Seller)

}

type Company struct {
model.UUIDModel

Sellers *[]Seller // Company HasMany Seller (Company 0..1 -> 0..* Seller)
}

Listing 2: Query

company, err := cql.Query[Company](
conditions.Company.Sellers.Preload(),

).FindOne()

if err == nil {
sellers, err := company.GetSellers()
if err == nil {

// you can safely apply your business logic
} else {

// err is cql.ErrRelationNotLoaded
}

}

Nested preloads can also be applied to preload model relationships within the collection:

Listing 3: Example model

type Office struct {
model.UUIDModel

Seller *Seller
SellerID *model.UUID `gorm:"not null"` // Seller HasOne Office (Seller 1 -> 1 Office)

}

type Seller struct {
(continues on next page)

13.3. Preload collections 49

cql

(continued from previous page)

model.UUIDModel

Office *Office // Seller HasOne Office (Seller 1 -> 1 Office)

Company *Company
CompanyID *model.UUID // Company HasMany Seller (Company 0..1 -> 0..* Seller)

}

type Company struct {
model.UUIDModel

Sellers *[]Seller // Company HasMany Seller (Company 0..1 -> 0..* Seller)
}

Listing 4: Query

company, err := cql.Query[Company](
conditions.Company.Sellers.Preload(

conditions.Seller.Office().Preload()
),

).FindOne()

if err == nil {
sellers, err := company.GetSellers()
if err == nil {

for _, seller := range sellers {
office, err := seller.GetOffice()
if err == nil {

// you can safely apply your business logic
} else {

// err is cql.ErrRelationNotLoaded
}

}
} else {

// err is cql.ErrRelationNotLoaded
}

}

50 Chapter 13. Preloading

CHAPTER

FOURTEEN

CREATE

Create operations are made using gorm directly. For more information consult gorm documentation

51

https://gorm.io/docs/create.html

cql

52 Chapter 14. Create

CHAPTER

FIFTEEN

UPDATE

While update operations can still be performed using gorm’s Save method (see gorm documentation), this is useful
only if the model(s) to be updated have already been loaded from the database.

On the contrary, cql’s Update method allows the update of all the models that meet the conditions entered without the
need to load the information (via the direct execution of an UPDATE statement).

15.1 Update methods

Update operations are divided into two parts: the Update method and the Set method. In the first one, we must define
the conditions that will determine which models will be updated. Here, the whole system of compilable queries is valid
(for details visit Query). In the second one, we define the updates to be performed.

The object obtained using cql.Update has different methods that will allow you to modify the query:

15.1.1 Modifier methods

Modifier methods are those that modify the query in a certain way, affecting the models updated: - Limit: specifies
the number of models to be updated. - Ascending: specifies an ascending order when updating models. - Descending:
specifies a descending order when updating models. - Returning: specifies that the updated models must be fetched from
the database after being updated. (not supported by MySQL). Preload of related data is also possible (not supported
by SQLite).

15.1.2 Finishing methods

Finishing methods are those that cause the query to be executed:

• Set: defines the updates to be performed

15.1.3 Example

type MyModel struct {
model.UUIDModel

Name string
}

updatedCount, err := cql.Update[MyModel](
(continues on next page)

53

https://gorm.io/docs/update.html

cql

(continued from previous page)

gormDB,
conditions.MyModel.Name.Is().Eq("a_string"),

).Set(
conditions.MyModel.Name.Set().Eq("a_string_2"),

)

As you can see, the syntax for the Set method is similar to the queries system with the difference that the Set method
must be used instead of Is.

For attributes that allow null (nullable values, pointers, nullable relations) the .Set().Null() method will also be available.

15.1.4 Joins

It is also possible to perform joins in the first part of the update (Update method):

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Name string

Related *MyOtherModel
RelatedID *model.UUID

}

updatedCount, err := cql.Update[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Name.Is().Eq("a_string"),
),

).Set(
conditions.MyModel.Name.Set().Eq("a_string_2"),

)

Here the only limitation is that in the Set part, only the values of the initial model can be updated (not of the joined
models).

This limitation is imposed by the database engines, with the exception of MySQL, which allows multiple tables to be
updated at the same time. To do this, you use the SetMultiple method:

updatedCount, err := cql.Update[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Name.Is().Eq("a_string"),
),

).SetMultiple(
conditions.MyModel.Name.Set().Eq("a_string_2"),

(continues on next page)

54 Chapter 15. Update

cql

(continued from previous page)

conditions.MyOtherModel.Name.Set().Eq("a_string_2"),
)

15.1. Update methods 55

cql

56 Chapter 15. Update

CHAPTER

SIXTEEN

DELETE

While delete operations can still be performed using gorm’s Delete method (see gorm documentation), this is useful
only if the model(s) to be delete have already been loaded from the database.

On the contrary, cql’s Delete method allows the deletion of all the models that meet the conditions entered without the
need to load the information (via the direct execution of a DELETE statement).

16.1 Delete methods

Delete operations are divided into two parts: the Delete method and the Exec method. In the first one, we must define
the conditions that will determine which models will be deleted. Here, the whole system of compilable queries is valid
(for details visit Query).

The object obtained using cql.Delete has different methods that will allow you to modify the query:

16.1.1 Modifier methods

Modifier methods are those that modify the query in a certain way, affecting the models delete: - Limit: specifies the
number of models to be deleted. (only supported by MySQL) - Ascending: specifies an ascending order when deleted
models. (only supported by MySQL) - Descending: specifies a descending order when deleted models. (only supported
by MySQL) - Returning: specifies that the models models must be fetched from the database after being deleted (the
old data is returned) (not supported by MySQL). Preload of related data is also possible (not supported by SQLite).

16.1.2 Finishing methods

Finishing methods are those that cause the query to be executed:

• Exec: executes the delete

16.1.3 Example

type MyModel struct {
model.UUIDModel

Name string
}

deletedCount, err := cql.Delete[MyModel](
(continues on next page)

57

https://gorm.io/docs/delete.html

cql

(continued from previous page)

gormDB,
conditions.MyModel.Name.Is().Eq("a_string"),

).Exec()

16.1.4 Joins

It is also possible to perform joins in the first part of the delete (Delete method):

type MyOtherModel struct {
model.UUIDModel

Name string
}

type MyModel struct {
model.UUIDModel

Name string

Related *MyOtherModel
RelatedID *model.UUID

}

deletedCount, err := cql.Delete[MyModel](
gormDB,
conditions.MyModel.Related(

conditions.MyOtherModel.Name.Is().Eq("a_string"),
),

).Exec()

Here the only limitation is that only the the initial models will be deleted (not of the joined models).

58 Chapter 16. Delete

CHAPTER

SEVENTEEN

LOGGER

When connecting to the database, i.e. when creating the gorm.DB object, it is possible to configure the type of logger
to use, the logging level, among others. As explained in the connection section, this can be done by using the cql.Open
method:

gormDB, err = cql.Open(
dialector,
&gorm.Config{
Logger: logger.Default,

},
)

Any logger that complies with logger.Interface can be configured.

17.1 Log levels

The log levels provided by cql are the same as those of gorm:

• logger.Error: To only view error messages in case they occur during the execution of a sql query.

• logger.Warn: The previous level plus warnings for execution of queries and transactions that take longer than
a certain time (configurable with SlowQueryThreshold and SlowTransactionThreshold respectively, 200ms by
default).

• logger.Info: The previous level plus information messages for each query and transaction executed.

17.2 Transactions

For the logs corresponding to transactions (slow transactions and transaction execution) to be performed, it is necessary
to use the cql.Transaction method.

59

cql

17.3 Default logger

cql provides a default logger that will print Slow SQL and happening errors.

You can create one with the default configuration using (take into account that logger is
github.com/FrancoLiberali/cql/logger and gormLogger is gorm.io/gorm/logger):

logger.Default

or use logger.New to customize it:

logger.New(logger.Config{
LogLevel: gormLogger.Warn,
SlowQueryThreshold: 200 * time.Millisecond,
SlowTransactionThreshold: 200 * time.Millisecond,
IgnoreRecordNotFoundError: false,
ParameterizedQueries: false,
Colorful: true,

})

The LogLevel is also configurable via the ToLogMode method.

Example

example.go:30 [10.392ms] [rows:1] INSERT INTO "products" ("id","created_at","updated_at",
→˓"deleted_at","string","int","float","bool") VALUES ('4e6d837b-5641-45c9-a028-
→˓e5251e1a18b1','2023-07-21 17:19:59.563','2023-07-21 17:19:59.563',NULL,'',1,0.000000,
→˓false)

17.4 Zap logger

cql provides the possibility to use zap as logger. For this, there is a package called gormzap. The information displayed
by the zap logger will be the same as if we were using the default logger but in a structured form, with the following
information:

• level: ERROR, WARN or DEBUG

• message:

– query_error for errors during the execution of a query (ERROR)

– query_slow for slow queries (WARN)

– transaction_slow for slow transactions (WARN)

– query_exec for query execution (DEBUG)

– transaction_exec for transaction execution (DEBUG)

• error: <error_message> (for errors only)

• elapsed_time: query or transaction execution time

• rows_affected: number of rows affected by the query

• sql: query executed

You can create one with the default configuration using:

60 Chapter 17. Logger

https://github.com/uber-go/zap

cql

gormzap.NewDefault(zapLogger)

where zapLogger is a zap logger, or use gormzap.New to customize it:

gormzap.New(zapLogger, logger.Config{
LogLevel: logger.Warn,
SlowQueryThreshold: 200 * time.Millisecond,
SlowTransactionThreshold: 200 * time.Millisecond,
IgnoreRecordNotFoundError: false,
ParameterizedQueries: false,

})

The LogLevel is also configurable via the ToLogMode method. Any configuration of the zap logger is done directly
during its creation following the zap documentation. Note that the zap logger has its own level setting, so the lower of
the two settings will be the one finally used.

Example

DEBUG example.go:107 query_exec {"elapsed_time": "3.291981ms", "rows_affected": "1
→˓", "sql": "SELECT products.* FROM \"products\" WHERE products.int = 1 AND \"products\".
→˓\"deleted_at\" IS NULL"}

17.4. Zap logger 61

https://pkg.go.dev/go.uber.org/zap#hdr-Configuring_Zap

cql

62 Chapter 17. Logger

CHAPTER

EIGHTEEN

CONTRIBUTING

Thank you for your interest in CQL! This document provides the guidelines for how to contribute to the project through
issues and pull-requests. Contributions can also come in additional ways such as commenting on issues or pull requests
and more.

18.1 Issues

18.1.1 Issue types

There are 2 types of issues:

• Bug report: You’ve found a bug with the code, and want to report it, or create an issue to track the bug.

• Feature request: Used for items that propose a new idea or functionality. This allows feedback from others before
code is written.

18.1.2 Before submitting

Before you submit an issue, make sure you’ve checked the following:

1. Check for existing issues

• Before you create a new issue, please do a search in open issues to see if the issue or feature request has
already been filed.

• If you find your issue already exists, make relevant comments and add your reaction.

2. For bugs

• It’s not an environment issue.

• You have as much data as possible. This usually comes in the form of logs and/or stacktrace.

3. You are assigned to the issue, a branch is created from the issue and the wip tag is added if you are also planning
to develop the solution.

63

https://github.com/FrancoLiberali/cql/issues

cql

18.2 Pull Requests

All contributions come through pull requests. To submit a proposed change, follow this workflow:

1. Make sure there’s an issue (bug report or feature request) opened, which sets the expectations for the contribution
you are about to make

2. Assign yourself to the issue and add the wip tag

3. Fork the repo and create a new branch respecting the naming policy from the issue

4. Install the necessary development environment

5. Create your change and the corresponding tests

6. Update relevant documentation for the change in docs/

7. If changes are necessary in cql quickstart and cql tutorial, follow the same workflow there

8. Open a PR (and add links to the other repos’ PR if they exist)

9. Wait for the CI process to finish and make sure all checks are green

10. A maintainer of the project will be assigned

18.2.1 Use work-in-progress PRs for early feedback

A good way to communicate before investing too much time is to create a “Work-in-progress” PR and share it with your
reviewers. The standard way of doing this is to add a “[WIP]” prefix in your PR’s title and assign the do-not-merge
label. This will let people looking at your PR know that it is not well baked yet.

18.2.2 Branch naming policy

[BRANCH_TYPE]/[BRANCH_NAME]

• BRANCH_TYPE is a prefix to describe the purpose of the branch. Accepted prefixes are:

– feature, used for feature development

– bugfix, used for bug fix

– improvement, used for refactor

– library, used for updating library

– prerelease, used for preparing the branch for the release

– release, used for releasing project

– hotfix, used for applying a hotfix on main

– poc, used for proof of concept

• BRANCH_NAME is managed by this regex: [a-z0-9._-] (_ is used as space character).

64 Chapter 18. Contributing

https://github.com/FrancoLiberali/cql
https://github.com/FrancoLiberali/cql-quickstart
https://github.com/FrancoLiberali/cql-tutorial

cql

18.3 Code of Conduct

This project has adopted the Contributor Covenant Code of Conduct

18.3. Code of Conduct 65

https://github.com/FrancoLiberali/cql/blob/main/CODE_OF_CONDUCT.md

cql

66 Chapter 18. Contributing

CHAPTER

NINETEEN

DEVELOPING

This document provides the information you need to know before developing code for a pull request.

19.1 Environment

• Install go >= v1.20

• Install project dependencies: go get

• Install docker and compose plugin

19.2 Directory structure

This is the directory structure we use for the project:

• docker/ : Contains the docker, docker-compose and configuration files for different environments.

• docs/: Contains the documentation showed for readthedocs.io.

• test/: Contains all the tests.

At the root of the project, you will find:

• The README.

• The changelog.

• The LICENSE file.

19.3 Tests

19.3.1 Dependencies

Running tests have some dependencies as: gotestsum, etc.. Install them with make install_dependencies.

67

https://go.dev/doc/install
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

cql

19.3.2 Linting

We use golangci-lint for linting our code. You can test it with make lint. The configuration file is in the default
path (.golangci.yml). The file .vscode.settings.json.template is a template for your .vscode/settings.
json that formats the code according to our configuration.

19.3.3 Tests

We use the standard test suite in combination with github.com/stretchr/testify to do our testing. Tests have a database.
CQL is tested on multiple databases. By default, the database used will be postgresql:

make test

To run the tests on another database you can use: make test_postgresql, make test_cockroachdb, make
test_mysql, make test_sqlite, make test_sqlserver. All of them will be verified by our continuous inte-
gration system.

19.4 Requirements

To be acceptable, contributions must:

• Have a good quality of code, based on https://go.dev/doc/effective_go.

• Have at least 80 percent new code coverage (although a higher percentage may be required depending on the
importance of the feature). The tests that contribute to coverage are unit tests and integration tests.

• The features defined in the PR base issue must be explicitly tested by tests.

19.5 Use of Third-party code

Third-party code must include licenses.

68 Chapter 19. Developing

https://github.com/stretchr/testify
https://go.dev/doc/effective_go

CHAPTER

TWENTY

MAINTAINING

This document is intended for CQL maintainers only.

20.1 How to release

Release tag are only done on the main branch. We use Semantic Versioning as guideline for the version management.

Steps to release:

• Create a new branch labeled release/vX.Y.Z from the latest main.

• Improve the version number in cql-gen/version/version.go and cqllint/version/version.go.

• Commit the modifications with the label Release version X.Y.Z.

• Create a pull request on github for this branch into main.

• Once the pull request validated and merged, tag the main branch using ./create_tag.sh X.Y.Z.

69

https://semver.org/spec/v2.0.0.html

	What is cql?
	Is cql a copy of gorm-gen?
	Quickstart
	Run it
	Understand it

	Tutorial
	Model and data
	Tutorial 1: simple query
	Tutorial 2: operators
	Tutorial 3: modifiers
	Tutorial 4: joins
	Tutorial 5: preloading
	Tutorial 6: dynamic operators
	Tutorial 7: update
	Tutorial 8: create and delete
	Tutorial 9: Collections
	Tutorial 10: Compile type safety

	Concepts
	Model
	Base model
	Model ID
	Auto Migration
	GormDB
	Condition
	WhereCondition
	ConnectionCondition
	JoinCondition
	Operator
	Static operator
	Dynamic operator
	Unsafe operator
	Nullable types
	Compiled query system
	Conditions generation
	Relation getter

	Declaring models
	Model declaration
	Base models
	Type of attributes
	Associations
	IDs
	References

	Reverse reference

	Connecting to a database
	Connection
	Migration

	Type safety
	Compile time safety
	Conditions of the model
	Name of an attribute or operator
	Type of an attribute
	Type of an attribute (dynamic operator)

	Runtime errors

	cql-gen
	Installation
	Conditions generation
	Use of the conditions

	cqllint
	Installation
	Execution
	Errors
	ErrFieldModelNotConcerned
	ErrFieldIsRepeated
	ErrAppearanceMustBeSelected
	ErrAppearanceOutOfRange

	Misuses
	Set the same value
	Unnecessary Appearance selection

	Query
	Query creation
	Transactions
	Query methods
	Modifier methods
	Finishing methods

	Conditions
	Examples

	Operators

	Advanced query
	Collections
	Dynamic operators
	Functions

	Appearance
	Unsafe operators
	Unsafe conditions (raw SQL)

	Preloading
	Examples
	Relation getters
	Preload collections

	Create
	Update
	Update methods
	Modifier methods
	Finishing methods
	Example
	Joins

	Delete
	Delete methods
	Modifier methods
	Finishing methods
	Example
	Joins

	Logger
	Log levels
	Transactions
	Default logger
	Zap logger

	Contributing
	Issues
	Issue types
	Before submitting

	Pull Requests
	Use work-in-progress PRs for early feedback
	Branch naming policy

	Code of Conduct

	Developing
	Environment
	Directory structure
	Tests
	Dependencies
	Linting
	Tests

	Requirements
	Use of Third-party code

	Maintaining
	How to release

